نوع مقاله : مقاله پژوهشی

نویسنده

گروه حسابداری، دانشگاه حضرت معصومه (س)، قم، ایران

چکیده

سیستمهای حسابداری دیجیتال بهعنوان یک فناوری، نقش مهمی در مدیریت تراکنشهای مالی، ثبت داده‌ها و تسهیل فرایندهای تصمیمگیری دارد. در همین راستا، هدف پژوهش حاضر شناسایی و تحلیل عوامل مؤثر بر قصد شرکتها در بهکارگیری سیستمهای حسابداری دیجیتال است. این پژوهش به لحاظ هدف کاربردی و به لحاظ روش گردآوری دادهها توصیفی-پیمایشی است. داده‌های پژوهش حاضر از طریق توزیع پرسشنامه بین 285 حسابدار جمع‌آوری‌شده است. تحلیل دادههای پژوهش با استفاده از مدلسازی معادلات ساختاری انجام شده است. در این پژوهش برای آزمون 11 فرضیه پژوهش، از سه مدل موفقیت سیستمهای اطلاعاتی، مدل پذیرش فناوری و مدل انتظار-تأیید و همچنین یک مدل ترکیبی استفاده شد. یافتههای پژوهش نشان دادند کیفیت سیستم، کیفیت اطلاعات، سودمندی ادراک‌شده، سهولت استفاده ادراک‌شده، تأیید و رضایت بر قصد شرکتها در استفاده مستمر از سیستمهای حسابداری دیجیتال اثر مثبت و معناداری دارند. درکل، یافتههای این پژوهش نشان داد درک هرچه بهتر عوامل مؤثر بر قصد استفاده مستمر از سیستمهای حسابداری دیجیتال میتواند نقش مؤثری در پذیرش و استفاده طولانیمدت از آن‌ها ایفا کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identifying and Analyzing Factors Affecting Companies' Intention to Use Digital Accounting Systems

نویسنده [English]

  • Mohammad Nazaripour

Department of Accounting, Hazrat-e Masoumeh University , Qom, Iran.

چکیده [English]

Digital accounting systems play a crucial role in managing financial transactions, recording data, and facilitating decision-making processes. The aim of the current research is to identify and analyze the factors influencing companies’ intention to use digital accounting systems. This study is practical in nature and employs a descriptive survey method for data collection. Data were gathered through questionnaires distributed to 275 accountants and analyzed using structural equation modeling. In this research, the information systems success model (ISSM), the technology acceptance model (TAM), the expectation-confirmation model (ECM), and a combined model were applied to test 11 research hypotheses. The findings revealed that system quality, information quality, perceived usefulness, perceived ease of use, confirmation, and satisfaction significantly and positively influence companies' intention to continue using digital accounting systems. Overall, the findings demonstrate that a proper understanding of the factors affecting the continuance intention of digital accounting systems plays a key role in their acceptance and long-term use.

Introduction

Information technology (IT) plays a key role in the success of various fields, including accounting. IT helps organizations cope with changes and gain a competitive advantage (Almaqtari et al., 2023). Organizational managers and market participants require reliable, sufficient, and timely financial/accounting information to make accurate decisions (Al-Hattami and Kabra, 2022). Digital accounting systems (DAS) serve as a key tool for achieving this objective (Alawaqleh and AlSohaimat, 2017). In the business sector, DAS plays a prominent role in managing financial transactions, recording data, and facilitating decision-making.
The effective use of DAS necessitates considering the factors influencing companies’ intention to adopt and continue using it. A review of the literature indicates that, to date, few studies have focused on identifying and evaluating the factors affecting the intention to continue using DAS, particularly at the organizational level. Models such as the IS success model (ISSM) by DeLone and McLean (1992), Davis’s (1989) technology acceptance model (TAM), and Bhattacherjee’s (2001) expectation-confirmation model (ECM) are widely recognized for their applicability to analyzing specific systems and technologies. These models are extensively used due to their adaptability to different environmental contexts. The present study investigates the factors influencing organizational users’ intention to adopt and continue employing DAS by applying the three aforementioned models and a combined model.

Methodology

The present study included seven constructs: system quality, information quality, perceived usefulness, perceived ease of use, confirmation, satisfaction, and intention to continue using DAS. The research constructs were measured using scales adapted from previous studies. The items for the constructs were rated on a 5-point Likert scale. A questionnaire was employed to collect data, and a total of 285 usable questionnaires were obtained. The population of this study consisted of accountants from manufacturing companies in Tehran Province. The sample size was determined using the convenience sampling method. The reliability of the constructs was assessed using composite reliability (CR) and average variance extracted (AVE), while their validity was evaluated through convergent and divergent validity. Structural equation modeling was used to test the research hypotheses and model.

Results and Discussion

According to the research findings, the variables of system quality (SQ), information quality (IQ), perceived usefulness (PU), perceived ease of use (PEU), and satisfaction (SAT) have a significant positive effect on the intention to continue using digital accounting systems (ICU-DAS). Furthermore, SQ, IQ, PU, PEU, and confirmation (CON) have a significant positive effect on SAT. In addition, PEU has a significant positive effect on PU. Based on unstandardized coefficients (B), a one-unit increase in SQ, IQ, PU, PEU, and SAT can result in an increase of 0.353, 0.137, 0.154, 0.283, and 0.186 units in DAS, respectively. Similarly, a one-unit increase in SQ, IQ, PU, and CON can result in an increase of 0.262, 0.178, 0.194, and 0.258 units in SAT, respectively. Finally, a one-unit increase in PEU causes an increase of 0.247 units in PU.
In this research, the mediating effects of PU and SAT were tested. PU mediates the relationship between CON and SAT, with 0.081 units of the total effect (0.339 units) attributable to the mediator variable. Furthermore, SAT mediates the relationship between the four variables of PEU, IQ, SQ, and PU with ICU-DAS. For instance, in the relationship between PEU and ICU-DAS, 0.047 of the total effect (0.331) is due to SAT. As both direct and indirect effects are significant in all five relationships, it can be concluded that the mediating effects in all five relationships are partial. The coefficient of determination (R2) for the IS success model (ISSM), technology acceptance model (TAM), expectation-confirmation model (ECM), and the combined model were 32%, 39%, 31%, and 45%, respectively.

Conclusion

This research developed a new model by combining the IS success model (ISSM), technology acceptance model (TAM), and expectation-confirmation model (ECM). The results demonstrated that the explanatory power of the combined model was higher than that of the three individual models. According to the findings, SQ, IQ, PU, PEU, CON, and SAT significantly affect ICU-DAS. For example, the information quality, by promoting the accuracy and reliability of financial information, can increase the intention to continue using DAS.
Based on the findings, identifying and understanding the factors affecting the intention to continue using digital accounting systems can help company managers and policymakers make informed decisions regarding the adoption and long-term use of such systems. Organizations can enhance the acceptance and continuous use of systems (including DAS), by improving SQ, IQ, and employee satisfaction. Moreover, organizations can effectively monitor the planning and implementation process through the application of DAS. Finally, technology vendors and accounting software providers can increase their revenue by improving the quality of their products and services.
 

کلیدواژه‌ها [English]

  • Digital Accounting Systems
  • Information Quality
  • Intention to Continue Using
  • Satisfaction
  • System Quality
  1. تختائی، نصرالله؛ شلال‍نژاد، علی؛ شلال‍نژاد، محمد. (1402). فناوری دیجیتال و گزارشگری مالی. چشمانداز حسابداری و مدیریت، دوره 6، شماره 82، 191-187.
  2. تیرند، امین؛ تیرند، مسعود. (1402). تأثیر سیستم‍های حسابداری دیجیتالی بر کیفیت تصمیم‍گیری در صنعت بانکداری. هفتمین کنفرانس بینالمللی مدیریت، حسابداری، اقتصاد و بانکداری، 31 خرداد، ونکوور کانادا.
  3. حبیبی، آرش؛ کلاهی، بهاره (1401). مدل‍یابی معادلات ساختاری و تحلیل عاملی. چاپ دوم، انتشارات جهاد دانشگاهی، تهران.
  4. ستایش محمدحسین؛ رضائیان‍زاده، زهرا (1402). شناسایی و رتبه‍بندی عوامل مؤثر بر نوآوری در حسابداری. مطالعات تجربی حسابداری مالی، سال بیستم، شماره 78، 33-1. https://doi.org/10.22054/qjma.2023.73784.2461
  5. کلانتری، مهدی؛ صفاکیش، محمدسعید (1396). کاربرد Amos در مدل‌سازی معادلات ساختاری. چاپ دوم، انتشارات پادینا، تهران.
  6. ملکی اسکوئی، ملک‍تاج (1402). سیستم‍های حسابداری دیجیتال و فناوری‍های نوین در بخش عمومی: نقش دولت الکترونیک در توسعه پایدار. نشریه علمی مطالعات نوین علوم انسانی در جهان، جلد 4، شماره 4، 12-1.
  7. نمازی، محمد؛ خرم‍دل ماسوله، زهرا (1401). تأثیر نوآوری سبز و نقش میانجی حسابداری مدیریت زیست‌محیطی بر عملکرد مالی، زیست‌محیطی و اقتصادی شرکت. مطالعات تجربی حسابداری مالی، سال نوزدهم، شماره 74، 40-1. https://doi.org/10.22054/qjma.2022.65916.2350
  8. Adam, N. A., & Alarifi, G. (2021). Innovation practices for survival of small and medium enterprises (SMEs) in the COVID-19 times: the role of external support. Journal of Innovation and Entrepreneurship, 10(1), 1–22. https:/‌/‌doi.org/‌10.1186/‌s13731-021-00156-6
  9. Akrong, G. B., Yunfei, S., & Owusu, E. (2022). Development and validation of an improved De-Lone-McLean IS success model-application to the evaluation of a tax administration ERP. International Journal of Accounting Information Systems, 47, 100579. https:/‌/‌doi.org/‌10.1016/‌j.accinf.2022.100579
  10. Alawaqleh, Q., & Al-Sohaimat, M. (2017). The relationship between accounting information systems and making investment decisions in the industrial companies listed in the Saudi Stock market. International Business Research, 10(6), 199–211. https:/‌/‌doi.org/‌10.5539/‌ibr.v10n6p199
  11. Al-Debei, M. M., Dwivedi, Y. K., & Hujran, O. (2022). Why would telecom customers continue to use mobile value-added services? Journal of Innovation & Knowledge, 7(4), 100242. https:/‌/‌doi.org/‌10.1016/‌j.jik.2022.100242
  12. Al-Hattami, H. M., & Kabra, J. D. (2022). The influence of accounting information system on management control effectiveness: The perspective of SMEs in Yemen. Information Development, 02666669221087184. https:/‌/‌doi.org/‌10.1177/‌02666669221087184
  13. Al-Hattami. H. M. (2022). Impact of AIS success on decision-making effectiveness among SMEs in less developed countries. Information Technology for Development, 1–21. https:/‌/‌doi.org/‌10.1080/‌02681102.2022.2073325
  14. Al-Hattami, H. M., & Almaqtari, F. A. (2023). What determines digital accounting systems’ continuance intention? An empirical investigation in SMEs. Humanities and Social Sciences Communications, 10(1), 1-13. https:/‌/‌doi.org/‌10.1057/‌s41599-023-02332-3
  15. Al-Hattami, H. M. (2021). Validation of the D&M IS success model in the context of accounting information system of the banking sector in the least developed countries. Journal of Management Control, 32(1), 127–153. https:/‌/‌doi.org/‌10.1007/‌s00187-020-00310-3
  16. Alipour Shirsavar, H., Gilaninia, S., & Mohammadi Almani, A. (2012). A Study of factors influencing positive word of mouth in the Iranian banking industry. Middle-East Journal of Scientific Research, 11(4), 454-460.
  17. Al-Mamary, Y. H., Abubakar, A. A., & Abdulrab, M. (2023). The effects of the expectation confirmation model (ECM) and the technology acceptance model (TAM) on learning management systems (LMS) in sub-saharan Africa. Interactive Learning Environments, 1-17. https:/‌/‌doi.org/‌10.1080/‌10494820.2023.2191272
  18. Almaqtari, F.A., Farhan, N.H., Al-Hattami, H.M., Elsheikh, T. (2023). The moderating role of information technology governance in the relationship between board characteristics and continuity management during the Covid-19 pandemic in an emerging economy. Humanities and Social Sciences Communications, 10(1), 1–16. https:/‌/‌doi.org/‌10.1057/‌s41599-023-01552-x
  19. Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https:/‌/‌doi.org/‌1016/‌j.tele.2020.101473
  20. Belfo, F., & Trigo, A. (2013). Accounting information systems: Tradition and future directions. Procedia Technology, 9, 536–546.
  21. Bhattacherjee A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351–370. https:/‌/‌doi.org/‌10.2307/‌3250921
  22. Bhattacherjee, A., Perols, J., & Sanford, C. (2008). Information technology continuance: A theoretic extension and empirical test. Journal of Computer Information Systems, 49(1), 17–26. https:/‌/‌doi.org/‌10.1080/‌08874417.2008.11645302
  23. Brukhansky, R., & Spilnyk, I. (2021). Digital accounting: concepts, roots and current discourse. The Institute of Accounting, Control and Analysis in the Globalization Circumstances, 1(3-4), 7-20.
  24. Cheng, Y-M. (2019). A hybrid model for exploring the antecedents of cloud ERP continuance: Roles of quality determinants and task-technology fit. International Journal of Web Information Systems, 15(2), 215–235. https:/‌/‌doi.org/‌10.1108/‌IJWIS-07-2018-0056
  25. Cheng, Y-M. (2020). Understanding cloud ERP continuance intention and individual performance: a TTF-driven perspective. Benchmarking: An International Journal, 27(4), 1591–1614. https:/‌/‌doi.org/‌10.1108/‌BIJ-05-2019-0208
  26. Dalloul, M. H. M., binti Ibrahim, Z., & Urus, S. T. (2023). The impact of quality dimensions of accounting information system success on the effectiveness of during financial crisis management: The mediating role of system usage in a government sector context. Asian Economic and Financial Review, 13(1), 18–48. https:/‌/‌doi.org/‌10.55493/‌5002.v13i1.4686
  27. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https:/‌/‌doi.org/‌10.2307/‌249008
  28. DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1):60–95. https:/‌/‌doi.org/‌10.1287/‌isre.3.1.60
  29. DeLone, W.H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9–30. https:/‌/‌doi.org/‌10.1080/‌07421222.2003.11045748
  30. Fadelelmoula, A. A. (2018). The impacts of the quality dimensions of the ERP system on the realization of the fundamental business objectives and perceived usefulness. International Journal of Enterprise Information Systems (IJEIS), 14(4), 89–107. https:/‌/‌doi.org/‌10.4018/‌IJEIS.2018100107
  31. Floropoulos, J., Spathis, C., Halvatzis, D., Tsipouridou, M. (2010). Measuring the success of the Greek taxation information system. International Journal of Information Management, 30(1), 47–56. https:/‌/‌doi.org/‌10.1016/‌j.ijinfomgt.2009.03.013
  32. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
  33. Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS quarterly, 213-236. https:/‌/‌doi.org/‌10.2307/‌249689
  34. Grande, E. U., Estébanez, R. P., & Colomina, C. M. (2011). The impact of Accounting Information Systems (AIS) on performance measures: empirical evidence in Spanish SMEs. The international Journal of Digital Accounting Research, 11(1), 25–43. https:/‌/‌doi.org/‌10.4192/‌1577-8517-v11_2
  35. Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572–2593. https:/‌/‌doi.org/‌10.1111/‌bjet.12864
  36. Guo, H., Yang, Z., Huang, R., & Guo, A. (2020). The digitalization and public crisis responses of small and medium enterprises: Implications from a COVID-19 survey. Frontiers of Business Research in China, 14, 1–25. https:/‌/‌doi.org/‌10.1186/‌s11782-020-00087-1
  37. Hair, J. F., Hult, G. T., Ringle, C., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage publications.
  38. Hou, C. K. (2016). Understanding business intelligence system continuance intention: An empirical study of Taiwan’s electronics industry. Information Development, 32(5), 1359–1371. https:/‌/‌doi.org/‌10.1177/‌0266666915599588
  39. Khayer, A., Bao, Y., & Nguyen, B. (2020). Understanding cloud computing success and its impact on firm performance: an integrated approach. Industrial Management & Data Systems, 120(5), 963–985. https:/‌/‌doi.org/‌10.1108/‌IMDS-06-2019-0327
  40. Kruskopf, S., Lobbas, C., Meinander, H., Söderling, K., Martikainen, M., & Lehner, O. (2020). Digital accounting and the human factor: theory and practice. ACRN Journal of Finance and Risk Perspectives, 9(1), 78-89.
  41. Kumar, K. A., Natarajan, S. (2020). An extension of the Expectation Confirmation Model (ECM) to study continuance behavior in using e-Health services. Innovative Marketing, 16(2), 15–28. https:/‌/‌doi.org/‌10.21511/‌im.16(2).2020.02
  42. Li, Y., & Wang, J. (2021). Evaluating the impact of information system quality on continuance intention toward cloud financial information system. Frontiers in Psychology, 12(12), 713353. https:/‌/‌doi.org/‌10.3389/‌fpsyg.2021.713353
  43. Mehta, N., Chauhan, S., & Kaur, I. (2022). Extending the story of IS success: A meta-analytic investigation of contingency factors at individual and organisational levels. European Journal of Information Systems, 31(5), 617–640. https:/‌/‌doi.org/‌10.1080/‌0960085X.2021.1907233
  44. Mishra, A., Shukla, A., Rana, N. P., Currie, W. L., & Dwivedi, Y. K. (2023). Re-examining post-acceptance model of information systems continuance: A revised theoretical model using MASEM approach. International Journal of Information Management, 68, 102571. https:/‌/‌doi.org/‌10.1016/‌j.ijinfomgt.2022.102571
  45. Mohammad, A. A. (2018). An exploration of accounting information system’s role in SMEs failure triangular. International Journal of Agile Systems and Management, 11(2), 155–178. https:/‌/‌doi.org/‌10.1504/‌IJASM.2018.092546
  46. Monteiro, A. P., Vale, J., Leite, E., Lis, M., & Kurowska-Pysz, J. (2022). The impact of information systems and non-financial information on company success. International Journal of Accounting Information Systems, 45, 100557. https:/‌/‌doi.org/‌10.1016/‌j.accinf.2022.100557
  47. Nair, S., Radman, O., & Ahamad, S. (2020). The budgetary process and its effects on financial performance: a study on small and medium enterprises in Yemen. International Journal of Innovation, Creativity and Change, 14(4), 816–834.
  48. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. McGraw-Hill
  49. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior research methods, instruments, & computers, 36, 717-731. https:/‌/‌doi.org/‌10.3758/‌BF03206553
  50. Qutaishat, F., Abushakra, A., Anaya, L., & Al-Omari, M. (2023). Investigating the factors affecting the intention to adopt cloud-based ERP systems during the COVID-19 era: evidence from Jordan. Business Process Management Journal, 29(3), 653-670. https:/‌/‌doi.org/‌10.1108/‌BPMJ-09-2022-0462
  51. Rahi, S., Alghizzawi, M., & Ngah, A. H. (2023). Factors influence user’s intention to continue use of e-banking during COVID-19 pandemic: the nexus between self-determination and expectation confirmation model. EuroMed Journal of Business, 18(3), 380-396. https:/‌/‌doi.org/‌10.1108/‌EMJB-12-2021-0194
  52. Ramayah, T., Ahmad, N. H., & Hong, T. S. (2012). An assessment of e-training effectiveness in multinational companies in Malaysia. Journal of Educational Technology & Society, 15(2), 125–137
  53. Ramdani, B., Raja, S., & Kayumova, M. (2022). Digital innovation in SMEs: a systematic review, synthesis and research agenda. Information Technology for Development, 28(1), 56–80. https:/‌/‌doi.org/‌10.1080/‌02681102.2021.1893148
  54. Ritchi, H., Azis, Y., Adrianto, Z., Setiono, K., & Sanjaya, S. (2019). In-app controls for small business accounting information system: a study of domain understanding. Journal of Small Business and Enterprise Development, 27(1), 31–51. https:/‌/‌doi.org/‌10.1108/‌JSBED-12-2018-0372
  55. Rubin, A., & Babbie, E. R. (2016). Empowerment series: Research methods for social work. Cengage Learning
  56. Schaefer, D. R., & Dillman, D. A. (1998). Development of a standard e-mail methodology: Results of an experiment. Public opinion quarterly, 378-397.
  57. Schöpfel, J., Azeroual, O., & Saake, G. (2019). Implementation and user acceptance of research information systems: An empirical survey of German universities and research organisations. Data Technologies and Applications, 54(1), 1–15. https:/‌/‌doi.org/‌10.1108/‌DTA-01-2019-0009
  58. Sharma, S. K., & Sharma, M. (2019). Examining the role of trust and quality dimensions in the actual usage of mobile banking services: An empirical investigation. International Journal of Information Management, 44, 65–75. https:/‌/‌doi.org/‌10.1016/‌j.ijinfomgt.2018.09.013
  59. Suzianti, A., & Paramadini, S. A. (2021). Continuance intention of e-learning: The condition and its connection with open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 97. https:/‌/‌doi.org/‌10.3390/‌joitmc7010097
  60. Teo, T. S., Srivastava, S. C., & Jiang, L. I. (2008). Trust and electronic government success: An empirical study. Journal of management information systems, 25(3), 99–132. https:/‌/‌doi.org/‌10.2753/‌MIS0742-1222250303
  61. Veeramootoo, N., Nunkoo, R., & Dwivedi, Y. K. (2018). what determines success of an e-government service? Validation of an integrative model of e-filing continuance usage. Government Information Quarterly, 35(2), 161–174. https:/‌/‌doi.org/‌10.1016/‌j.giq.2018.03.004
  62. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https:/‌/‌doi.org/‌10.2307/‌30036540
  63. Verkasalo, H. (2008). Dynamics of mobile service adoption. International Journal of E-Business Research (IJEBR), 4(3), 40–63. https:/‌/‌doi.org/‌10.4018/‌jebr.2008070103
  64. Williamson, K., & Johanson, G. (Eds.). (2017), Research methods: Information, systems, and contexts. Chandos Publishing
  65. Xu, H., Horn Nord, J., Daryl Nord, G., & Lin, B. (2003). Key issues of accounting information quality management: Australian case studies. Industrial Management & Data Systems, 103(7), 461–470. https:/‌/‌doi.org/‌10.1108/‌02635570310489160
  66. Zain, M. Z. B. M., & Hussin, A. R. B. C. (2019, January). Development of instrument for assessing information systems continuance use. In Proceedings of the 2nd International Conference on Software Engineering and Information Management (pp. 213-217). https:/‌/‌doi.org/‌10.1145/‌3305160.3305176
  67. Zheng, Y., Zhao, K., & Stylianou, A. (2013). The impacts of information quality and system quality on users’ continuance intention in information-exchange virtual communities: An empirical investigation. Decision Support Systems, 56, 513–524. https:/‌/‌doi.org/‌10.1016/‌j.dss.2012.11.008
  68. Zhou, W., Tsiga, Z., Li, B., Zheng, S., & Jiang, S. (2018). What influence users’ e-finance continuance intention? The moderating role of trust. Industrial Management & Data Systems, 118(8), 1647–1670. https:/‌/‌doi.org/‌10.1108/‌IMDS-12-2017-0602