نوع مقاله : مقاله پژوهشی

نویسندگان

1 پردیس بین المللی ارس دانشگاه تبریز

2 دانشگاه تبریز

چکیده

متغیرهای حسابداری شرکت دارای اطلاعات ارزشمندی برای ارزیابی ریسک سیستماتیک هستند. این ایده برای محققان بسیار جذاب است، چرا که اندازه‌گیری مبتنی بر بازار ریسک سیستماتیک دارای ایرادهایی از جمله عدم امکان اندازه‌گیری ریسک سیستماتیک شرکت‌هایی که سهام آنها در بازار سهام مبادله نمی‌شود، است. در این راستا تحقیقات متعددی که ریسک سیستماتیک را به انبوهی از متغیرهای حسابداری شرکت مرتبط می‌کنند، انجام شده است. اکثر مطالعات از روش رگرسیون کلاسیک استفاده نموده‌اند که ایراد اساسی این روش، تمرکز بر چند متغیر محدود برای حفظ درجه آزادی در یک سطح قابل قبول بوده است. مطالعه حاضر با بکارگیری روش میانگین‌گیری مدل بیزین این محدودیت را رفع نموده است. این مطالعه با بکارگیری داده‌های 55 شرکت از بورس تهران در فاصله سال‌های 1389تا 1402به بررسی اثر 58 متغیر مختلف حسابداری بر ریسک سیستماتیک این شرکت‌ها پرداخته و مهمترین متغیرهای تعیین کننده ریسک سیستماتیک را مشخص نموده است. بر اساس نتایج تخمین از مجموعه متغیرهای مورد بررسی در مجموع 5 متغیر دارای بیشترین تاثیر بر ریسک سیستماتیک بوده که از میان آنها اندازه شرکت در رتبه اول قرار دارد. متوسط ضریب این متغیر مثبت است. در رتبه دوم و سوم به ترتیب گردش دارایی و کارایی عملیاتی قرار دارند. ضریب متوسط کارایی عملیاتی منفی است و متوسط ضریب گردش دارایی مثبت است. در رتبه چهارم نسبت بدهی بلندمدت به حقوق صاحبان سهام با ضریب مثبت قرار دارد. در نهایت پنجمین متغیر توضیحی نسبت ارزش بازاری بنگاه به ارزش دفتری کل دارایی ها است که اثر منفی بر ریسک سیستماتیک دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the Impact of Accounting and Financial Variables on Stock Systematic Risk: A Bayesian Model Averaging Approach

نویسندگان [English]

  • Leila Farvizi 1
  • Sakineh Sojoodi 2
  • Hossein Asgharpour 2
  • Jafar Haghighat 2

1 Aras International Campus of Tabriz University

2 Tabriz University

چکیده [English]

Numerous studies have investigated the relationship between systematic risk and a wide range of accounting and financial variables. However, most empirical studies have adopted the classical regression method, which entails limitations such as a restricted number of variables to preserve degrees of freedom. To overcome this constraint, the present study employs the Bayesian Model Averaging (BMA) method. Using data from 55 companies listed on the Tehran Stock Exchange between 2010 and 2023, this study examines the influence of 58 different financial and accounting variables on the systematic risk of these companies. The research aims to identify the key variables that significantly contribute to systematic risk. The findings reveal that among the examined variables, company size has the strongest impact on systematic risk, with a positive coefficient. In second and third place, asset turnover and operational efficiency demonstrate significant effects, with the former exhibiting a positive coefficient and the latter a negative coefficient. The fourth influential variable is the ratio of long-term debt-to-equity, showing a positive coefficient. Lastly, the ratio of a company's market value to the book value of its total assets is identified as the fifth influential variable, exerting a negative impact on systematic risk.
 

Introduction

Understanding the drivers of systematic risk is crucial for investors seeking to optimize their portfolios and for companies aiming to develop robust risk management strategies. While many studies have explored the relationship between systematic risk and various accounting and financial variables, the majority have used classical regression methods, which tend to focus on a limited number of factors. This limitation often overlooks the complex interplay among variables that could better explain systematic risk. Given the growing need for more accurate models in the face of financial market volatility, this study adopts the Bayesian Model Averaging (BMA) approach to assess the impact of a wider range of accounting and financial variables on systematic risk. The research seeks to answer the following questions:
Research Question(s)
- Which accounting and financial variables most significantly influence the systematic risk of companies listed on the Tehran Stock Exchange?
-Do the selected variables have a positive or negative impact on systematic risk, and how do these effects vary across different industries and financial contexts?
2- Literature Review
Systematic risk, commonly measured by the beta coefficient, represents the portion of a company’s risk that cannot be diversified away. Previous studies have highlighted several accounting and financial factors, including company size, financial leverage, operational efficiency, and asset turnover, as important determinants of systematic risk (Figure 1). However, the results across studies are mixed, and traditional models often fail to account for the complex interactions among variables. Additionally, several studies have noted that the method of variable selection and estimation can significantly influence the conclusions drawn about risk determinants. The literature suggests that large firms tend to have higher systematic risk due to greater exposure to market and economic cycles, while smaller firms may experience lower risk due to reduced exposure to such fluctuations. Other studies have explored the roles of profitability, debt ratios, liquidity, and asset management in determining market risk, but there is no consensus on which variables are most influential.
 
Figure1- Fundamental Factors Affecting Systematic Risk
Source: Brimble & Hodgson (2007)
 
3- Methodology
This study employs the BMA technique to assess the impact of 58 potential accounting and financial variables on systematic risk. The BMA approach is particularly well-suited to this context because it enables the simultaneous consideration of multiple models, allowing for a more comprehensive understanding of the relationships between variables and risk. The study uses data from 55 companies listed on the Tehran Stock Exchange, covering the period from 2010 to 2023. The sample includes companies from a range of sectors, ensuring that the findings are not limited to any one industry. Data were collected from financial statements and reports available on the official website of the Tehran Stock Exchange (TSETMC), and the BMA method was implemented using Stata 18 software. The estimation process includes backward sampling, in which weak models are sequentially excluded and the best models are selected based on their posterior probability of explaining the data.
4- Results
The results of the BMA analysis indicate that several variables have a significant impact on systematic risk

Company Size: Company size has the strongest effect on systematic risk, with a positive coefficient, indicating that larger companies generally face higher systematic risk.
Asset Turnover: The asset turnover ratio, which measures how efficiently a company uses its assets to generate revenue, also has a positive effect on systematic risk.
Operational Efficiency: Companies with higher operational efficiency exhibit lower systematic risk, as indicated by the negative coefficient for operational efficiency.
Long-Term Debt-to-Equity Ratio: A positive relationship is found between the long-term debt-to-equity ratio and systematic risk, suggesting that companies with higher leverage tend to experience greater exposure to market risk.
Market Value to Book Value Ratio: This ratio has a negative effect on systematic risk, indicating that companies with higher market valuations relative to their book values are less sensitive to market fluctuations.

These variables were identified as the most significant based on their posterior inclusion probabilities (PIP), with company size having the highest PIP of 0.8143, indicating it is the most important determinant of systematic risk.
5- Discussion
The findings suggest that company size plays a pivotal role in determining systematic risk. Larger companies tend to be more exposed to broader economic fluctuations and market cycles, which can lead to higher systematic risk. Asset turnover, though generally considered a measure of operational efficiency, also contributes positively to risk, potentially due to the increased exposure of firms with higher asset turnover to volatile markets. Operational efficiency, on the other hand, shows a negative relationship with systematic risk, supporting the notion that companies with better control over their operations are more resilient to market shocks. This finding is consistent with the literature suggesting that operational efficiency can mitigate the impact of external risks. Similarly, the positive relationship between the long-term debt-to-equity ratio and systematic risk aligns with prior studies that highlight the role of financial leverage in amplifying market risk. Finally, the negative relationship with the market value to book value ratio indicates that investors view companies with higher market valuations as more stable, potentially because these companies are perceived as less vulnerable to market downturns.
6- Conclusion
This study contributes to the understanding of the determinants of systematic risk by employing the BMA approach, which overcomes limitations inherent in traditional regression models. The results highlight that company size, asset turnover, operational efficiency, the long-term debt-to-equity ratio, and the market value to book value ratio are the key factors influencing systematic risk. These findings have practical implications for investors and corporate managers seeking to mitigate exposure to market risk. Companies, especially larger ones, can benefit from enhancing operational efficiency and optimizing their financial structures to reduce systematic risk. Future research could explore the interaction between these variables across different sectors and market conditions, and further refine models by incorporating additional macroeconomic factors.

کلیدواژه‌ها [English]

  • Accounting variables
  • Bayesian model averaging method
  • Systematic risk
  1. اسلامی ‌بیدگلی، ‌‌غلامرضا و جولا، جعفر (1389). بررسی رابطه ساختار سرمایه با ریسک سیستماتیک شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. بورس اوراق بهادار، 8(2)، 91-113. https:/‌/‌journal.seo.ir/‌article_10877.html
  2. بادپا، بهروز، استا، سهراب و درویش حسینی، فاطمه. (1402). نقش مدیریت اقلام سرمایه در گردش در تبیین کارایی عملیاتی شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. مطالعات تجربی حسابداری مالی،20(80)، 255-287. https:/‌/‌doi.org/‌10.22054/‌qjma.2024.74109.2468
  3. رضایی، غلامرضا، شهرستانی، حمید، هژبر کیانی، کامبیز و مهرآرا، محسن. (1398). تأثیر سیاست پولی بر بازدهی و بی‌ثباتی بازار سهام (مقایسه‌ای بین ابزارهای سیاست پولی در ایران). تحقیقات مدل‌سازی اقتصادی، 9(36 )، 75-125. http:/‌/‌jemr.khu.ac.ir/‌article-1-1810-fa.html
  4. سجودی، سکینه، علی پور، زهرا و عزیزی نوروزآبادی، المیرا. (1403 انتشار آنلاین). تأثیر چرخه عمر شرکت بر ریسک سیستماتیک شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. فصلنامه علمی پژوهشی اقتصاد مقداری. https:/‌/‌doi.org/‌10.22055/‌jqe.2024.45451.2595
  5. سعیدی، علی، رامشه، منیژه. (1389). عوامل تعیین‌کننده ریسک سیستماتیک سهام در بورس اوراق بهادار تهران. پژوهش‌های حسابداری مالی، 3(1 (7))، 125-142. https:/‌/‌dorl.net/‌dor/‌20.1001.1.23223405.1390.3.1.8.7
  6. شکرخواه، جواد و اصغری، ایرج. (1402). مدل‌سازی بازده بلندمدت عرضه‌های اولیه سهام. مطالعات تجربی حسابداری مالی، 20(77)، 107-139. https:/‌/‌doi.org/‌10.22054/‌qjma.2023.73315.2450
  7. فدایی‍نژاد، محمد اسماعیل و فراهانی، رضا. (1396). اثرات متغیرهای کلان اقتصادی بر شاخص کل بورس اوراق بهادار تهران. اقتصاد مالی (اقتصاد مالی و توسعه)، 11(39)، 1-26.  
  8. مینویی، مهرزاد و اسماعیلی، محمد (1395). بررسی رابطه بین اهرم مالی و اهرم عملیاتی با ریسک سیستماتیک در شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. ششمین کنفرانس بین‌المللی حسابداری و مدیریت و سومین کنفرانس کارآفرینی و نوآوری‌های باز، تهران. https:/‌/‌civilica.com/‌doc/‌577877
  9. نمازی، محمد و خواجوی، شکراله. (1383). سودمندی متغیرهای حسابداری در پیش‌بینی ریسک سیستماتیک شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. بررسی‌های حسابداری و حسابرسی، 11(38)، 93-119. https:/‌/‌dor.isc.ac/‌dor/‌20.1001.1.26458020.1383.11.4.4.0
  10. نمکی، علی، عباسیان، عزت‌الله و شفیعی، الهه. (1401). تجزیه‌وتحلیل میزان ریسک سیستمی شرکت‌های بورس اوراق بهادار تهران با استفاده از رویکرد سیستم‌های پیچیده. راهبرد مدیریت مالی، 10 (36). 91-112. https:/‌/‌doi.org/‌10.22051/‌JFM.202030910.2360
  11. یادگاری، سعید و حاج‍حیدری، پریسا. (1401). بررسی اثر مالیات شرکت و اهرم مالی بر ریسک سرمایه‌گذاری در شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. نشریه علمی رویکردهای پژوهشی نوین مدیریت و حسابداری، 6(20)، 361-378. https:/‌/‌majournal.ir/‌index.php/‌ma/‌article/‌view/‌1267
  12. Adhikari, N. (2015). Determinants of Systemic Risk for Companies Listed on Nepal Stock Exchange. Global Journal of Management and Business Research, 15(5). 75-83. https:/‌/‌globaljournals.org/‌GJMBR_Volume15
  13. Agic, E., Cinjarevic, M., Kurtovic, E., & Cicic, M. (2016). Strategic Marketing Patterns and Performance Implications. European Journal of Marketing, 50, 2216–2248. https:/‌/‌doi.org/‌10.1108/‌EJM-08-2015-0589
  14. Ali, F., Fareed, Z., Khan, T.M., & Hamid, R. (2019). Impacts of Leverage on Investment: A Brief View of Pakistani Listed Firms. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 10(17), 1-8. http:/‌/‌doi.org/‌10.14456/‌ITJEMAST.2019.233
  15. Bank, S., Yzar, E., & Sivri, U. (2019). The Portfolios with Strong Brand Value: More Returns? Lower Risk? Borsa Istanbul Review, 20, 64–79. http:/‌/‌dx.doi.org/‌10.1016/‌j.bir.2019.09.001
  16. Beaver, W., Kettler, P., & Scholes, M. (1970). The association between market determined and accounting determined risk measures. The Accounting Review45(4), 654-682. https:/‌/‌doi.org/‌10.2307/‌2979035
  17. Ben-Zion, U., & Shalit, S. S. (1975). Size, leverage, and dividend record as determinants of equity risk. The Journal of Finance30(4), 1015-1026. https:/‌/‌doi.org/‌10.2307/‌2326720
  18. Bildersee, J. S. (1975). The association between a market-determined measure of risk and alternative measures of risk. The Accounting Review, 50(1), 81-98. http:/‌/‌resolver.scholarsportal.info/‌resolve/‌00014826/‌v50i0001/‌81_tabammraamor.xml
  19. Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81, 637- 654. https:/‌/‌www.jstor.org/‌stable/‌1831029
  20. Borde, S. (1998). Risk diversity across restaurants. Cornell Hotel & Restaurant Quarterly, 4, 64-69. http:/‌/‌dx.doi.org/‌10.1016/‌S0010-8804(98)80013-X
  21. Boyd, J. M. & Smith, B. D. (1998). Capital Market Imperfections in a Monetary Growth Model. Economic Theory, 11(2), 241-273. https:/‌/‌doi.org/‌10.1007/‌s001990050187
  22. Cheema, H. N. G. (2016). Determinants of Systematic Risk: An Empirical Investigation of the South Asian Countries [Unpublished doctoral dissertation, Department of Management Sciences, Capital University], Capital University, Islamabad, Pakistan. https:/‌/‌cust-library.azurewebsites.net/‌uploads/‌Hafiza_Nayab_Gul_Cheema-MBAG_143011.pdf
  23. Chincarini, L. B., Kim, D., & Moneta, F. (2020). Beta and firm age. Journal of Empirical Finance, 58, 50-74. https:/‌/‌doi.org/‌10.1016/‌j.jempfin.2020.05.003
  24. Ciccone, A., & Jarociński, M. (2010). Determinants of economic growth: will data tell? American Economic Journal: Macroeconomics2(4), 222-246. https:/‌/‌doi.org/‌ 10.1257/‌mac.2.4.222
  25. Clarkson, P. M., & Satterly, A. (1997). Australian Evidence on the Pricing of Estimation Risk. Pacific-Basin Finance Journal, 5, 281–299. https:/‌/‌doi.org/‌10.1016/‌S0927-538X (97)00009-7
  26. Clarkson, P. M., & Thompson, R. (1990). Empirical Estimates of Beta When Investors Face Estimation Risk. The Journal of Finance, 45, 431–453. https:/‌/‌doi.org/‌10.1016/‌1057-0810(91)90016-R
  27. Cornelius, P. K. (2011). International investments in private equity: asset allocation, markets, and industry structure. Academic Press. http:/‌/‌dx.doi.org/‌10.1016/‌C2009-0-20656-8
  28. Dhillon, A., & Rossetto, S. (2015). Ownership Structure, Voting, and Risk. Review of Financial Studies, 28(2), 521-560. https:/‌/‌doi.org/‌10.1093/‌rfs/‌hhu071
  29. Eldomiaty, T. I., Al Dhahery, M. H., & Al Shukri, M. (2009). The Fundamental Determinants of Systematic Risk and Financial Transparency in the DFM General Index Al Dhahery. Middle Eastern Finance and Economics, 5, 62-74. https:/‌/‌papers.ssrn.com/‌sol3/‌papers.cfm?abstract_id=1571028
  30. Feldkircher, M., & Zeugner, S. (2012). The impact of data revisions on the robustness of growth determinants—A note on ‘Determinants of Economic Growth: Will Data Tell?’ Journal of Applied Econometrics, 27(4), 686-694. https:/‌/‌doi.org/‌10.1002/‌jae.2265
  31. Fernandez, C., Ley, E., & Steel, M. F. (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics, 100(2), 381-427. https:/‌/‌doi.org/‌10.1016/‌S0304-4076(00)00076-2
  32. Fewings, D. R. (1975). The impact of corporate growth on the risk of common stocks. The Journal of Finance30(2), 525-531. http:/‌/‌dx.doi.org/‌10.1111/‌j.1540-6261.1975.tb01827.x
  33. Foster, G. (1986). Financial Statement Analysis, Printic – Hall, Second Edition.https:/‌/‌www.amazon.com/‌George-Foster-Financial Statement-1986-03-14/‌dp/‌B0197P8XWK
  34. Galai, D., & Masulis, R. (1976). The Option Pricing Model and the Risk Factor of Stock. The Journal of Financial Economics, 3(1-2). 53-81. http:/‌/‌dx.doi.org/‌10.1016/‌0304-405x (76)90020-9
  35. Griffin, H. F., & Dugan, M. T. (2003). Systematic Risk and Revenue Volatility. Journal of Financial Research, 26, 179–189. http:/‌/‌dx.doi.org/‌10.1111/‌1475-6803.00053
  36. Gu, Z., & Kim, H. (2002). Determinants of restaurant systematic risk: A reexamination. The Journal of Hospitality Financial Management, 10(1), 1-13. http:/‌/‌dx.doi.org/‌10.1080/‌10913211.2002.10653757
  37. Houmes, R. E., MacArthur, J. B., & Stranahan, H. (2012). The Operating Leverage Impact on Systematic Risk within a Context of Choice: An Analysis of the US Trucking Industry. Managerial Finance, 38(12), 1184-1202. http:/‌/‌dx.doi.org/‌10.1108/‌03074351211271283
  38. Iqbal, M. J., & Shah, S. Z. A. (2012). Determinants of systematic risk. The Journal of Commerce, 4(1), 47-56. https:/‌/‌www.proquest.com/‌docview/‌963733044?sourcetype=Scholarly%20Journals
  39. Jacquier, E., Titman, Sh., & Yalçin, A. (2009). Predicting Systematic Risk: Implications from Growth Options. Journal of Empirical Finance, 17(5), 991-1005. http:/‌/‌dx.doi.org/‌10.1016/‌j.jempfin.2010.05.003
  40. Karakus, R. (2017). Determinants of affecting level from systematic risk: Evidence from BIST 100 companies in Turkey. Eurasian Journal of Business and Economics, 10(20), 33-46. http:/‌/‌dx.doi.org/‌10.17015/‌ejbe.2017.020.03
  41. Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the american statistical association, 90(430), 773-795. http:/‌/‌dx.doi.org/‌10.1080/‌01621459.1995.10476572
  42. Kumar, V., Aleemi, A. R., & Ali, A. (2015). The determinants of systematic risk: Empirical evidence from pakistan’s banking sector. Global Management Journal for Academic and Corporate Studies, 5(1), 146-154. https:/‌/‌gmjacs.bahriauni.com/‌index.php/‌ojs/‌issue/‌view/‌14
  43. Lev, B. (1974). On the association between operating leverage and risk. Journal of financial and quantitative analysis9(4), 627-641. http:/‌/‌dx.doi.org/‌10.2307/‌2329764
  44. Lev, B., & Kunitzky, S. (1974). On the association between smoothing measures and the risk of common stocks. The Accounting Review49(2), 259-270. https:/‌/‌www.jstor.org/‌stable/‌245100
  45. Ley, E., & Steel, M. F. (2009). On the effect of prior assumptions in Bayesian model averaging with applications to growth regression. Journal of applied econometrics24(4), 651-674. http:/‌/‌dx.doi.org/‌10.1002/‌jae.1057
  46. Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O. (2008). Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association103(481), 410-423. http:/‌/‌dx.doi.org/‌10.1198/‌016214507000001337
  47. Liu, H., Zhang, H., Gao, Y. C., & Chen, X. D. (2022). Firm age and beta: Evidence from China. International Review of Economics & Finance, 77, 244-261. http:/‌/‌dx.doi.org/‌10.1016/‌j.iref.2021.10.006
  48. Logue, D. E., & Merville, L. J. (1972). Financial policy and market expectations. Financial management, 37-44. http:/‌/‌dx.doi.org/‌10.2307/‌3665142
  49. Melicher, R. W. (1974). Financial factors which influence beta variations within a homogeneous industry environment. Journal of Financial and Quantitative Analysis9(2), 231-241. https:/‌/‌doi.org/‌10.2307/‌2330100
  50. Merton, R. K. (1973). An Intertemporal Capital Asset Pricing Model, Econometrica, 41(5), 867-887. https:/‌/‌doi.org/‌10.2307/‌1913811
  51. Miles, J. A. (1986). Growth Options and the Real Determinants of Systematic Risk, Journal of Business Finance and Accounting, 13(1). 95–105. http:/‌/‌dx.doi.org/‌10.1111/‌j.1468-5957.1986.tb01175.x
  52. Mnzav, I. D. (2009). The Significance of Corporation Tax as a Determinant of Systematic Risk: Evidence Using United Kingdom (UK) Data. KCA Journal of Business Management, 2(1), 44-61. http:/‌/‌dx.doi.org/‌10.4314/‌kjbm.v2i1.44410
  53. Mousa, M., Nosratabadi, S., Sagi, J., & Mosavi, A. (2021). The effect of marketing investment on firm value and systematic risk. Journal of Open Innovation: Technology, Market, and Complexity7(1), 64. http:/‌/‌dx.doi.org/‌10.3390/‌joitmc7010064
  54. Patel, R. C., & Olsen, R. A. (1984). Financial determinants of systematic risk in real estate investment trusts. Journal of Business Research12(4), 481-491. http:/‌/‌dx.doi.org/‌10.1016/‌0148-2963(84)90026-2
  55. Patro, D. K., Wald, J. K., & Wu, Y. (2002). The impact of macroeconomic and financial variables on market risk: evidence from international equity returns. European Financial Management, 8(4), 421-447. http:/‌/‌dx.doi.org/‌10.1111/‌1468-036x.00198
  56. Randika, P. A. D. D. (2024). Assessing Systematic Risk through Accounting Information: Evidence from the Colombo Stock Exchange. European Journal of Business and Management Research9(2), 79-83. http:/‌/‌dx.doi.org/‌10.24018/‌ejbmr.2024.9.2.2305
  57. Rodríguez‐Sanz, J. A., Vallelado, E., & Fernández‐Martín, M. (2024). Risk analysis of Spanish companies. Global Policy15, 76-91. http:/‌/‌dx.doi.org/‌10.1111/‌1758-5899.13316
  58. Roh, Y. S. (2002). Size, growth rate and risk sharing as the determinants of propensity to franchise in chain restaurants. International Journal of Hospitality Management, 21(1), 43-56. http:/‌/‌dx.doi.org/‌10.1016/‌s0278-4319(01)00014-7
  59. Rosenberg, B., & McKibben, W. (1973). The prediction of systematic and specific risk in common stocks. Journal of Financial and Quantitative Analysis, 8(2), 317-333. https:/‌/‌doi.org/‌10.2307/‌2330027
  60. Saravia, J. A., García, C. S., & Almonacid, P. M. (2020). The Determinants of Systematic Risk: A Firm Lifecycle Perspective. International Journal of Finance and Economics, 26(1), 1037-1049. http:/‌/‌dx.doi.org/‌10.1002/‌ijfe.1834
  61. Sharif, M. N., Hamid, K., Khurram, M. U., & Zulfiqar, M. (2016). Factors Effecting Systematic Risk in Isolation vs. Pooled Estimation: Empirical Evidence from Banking, Insurance, and Non-Financial Sectors of Pakistan. International Journal of Academic Research in Accounting, Finance and Management Sciences, 6(4), 287–300. http:/‌/‌dx.doi.org/‌10.6007/‌IJARAFMS/‌v6-i4/‌2430
  62. Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance19(3), 425-442. http:/‌/‌dx.doi.org/‌10.1111/‌j.1540-6261.1964.tb02865.x
  63. Tan, N., Chua, J., & Salamanca, P. (2015). Study of the Overall Impact of Financial Levearge and Other Determinants of Systematic Risk. In Proceeding of the Research Congresse, Philippines, 3, 1-7. https:/‌/‌www.dlsu.edu.ph/‌wp-content/‌uploads/‌pdf/‌conferences
  64. Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association81(394), 446-451. http:/‌/‌dx.doi.org/‌10.1080/‌01621459.1986.10478289
  65. Zhang, X., Wei, C., Lee, C. C., & Tian, Y. (2023). Systemic risk of Chinese financial institutions and asset price bubbles. The North American Journal of Economics and Finance, 64, 101880. http:/‌/‌dx.doi.org/‌10.1016/‌j.najef.2023.101880