Document Type : Research Paper
Authors
Abstract
Choosing between debt financing and capital financing influenced by internal and external factors impacting companies' capital structure. The main goal of determining capital structure is to recognize the combination of financial resources to maximize stockholders' wealth. Because of the qualitative aspects of capital formation in high-tech companies, there has been huge investments in these companies which doesn’t seem to be a rational behavior in the investment community; Therefore it seems necessary to compare high-tech and traditional company’s capital structure.
In this paper, in order to investigate the capital structure of high-tech and traditional companies and also comparing linear and non-linear models, companies are divided into two groups, high-tech and traditional companies. We collected year-company data of 378 companies during 2004- 2009 for the analysis using multiple regression and artificial neural network.
The findings of this study indicate that liability ratio and financial leverage decisions in two above mentioned companies are different. The capital structure criterion in both industries has significantly different and non-linear models of capital structure in comparison with linear ones are more powerful in prediction
Keywords
- ستایش، محمد حسین.کاظم نژاد، مصطفی، شفیعی، محمد جواد، (1388)، کاربرد الگوریتم ژنتیک در تعیین ساختار بهینه سرمایه شرکتهای پذیرفته شده در بورس اوراق بهادار تهران، بررسیهای حسابداری و حسابرسی، 56، صص 58-39.
- عرب مازار یزدی، محمد؛ قاسمی، مهسا؛ (1388)؛ برآورد قیمت عرضههای عمومی اولیه با استفاده از شبکههای عصبی مصنوعی. تحقیقات حسابداری شماره 1.
- کردستانی، غلامرضا. نجفی عمران، مظاهر (1387). بررسی عوامل تعیین کننده ساختار سرمایه: آزمون تجربی نظریه موازنه ایستا در مقابل نظریه سلسله مراتبی. تحقیقات مالی، 25.
- کیمیاگری، علی محمد، عینعلی، سودابه، (1387)، ارائه الگوی جامع ساختار سرمایه (مطالعه موردی شرکتهای پذیرفته شده در بورس تهران)، تحقیقات مالی، 25، صص 108-91.
- Altun, H., Bilgil, A., & Fidan, B. C. (2007). Treatment of multidimensional data to enhance neural network estimators in regression problems. Expert Systems with Applications, 32(2), 599–605.
- Binner, J. M. , Bissoondeeal, R. , Elger, T. , Gazely, A. & Mullineux, A. (2010). Linear Models versus neural Networks in macroeconomic forecasting. Working paper Available at http://www.ssrn.com
- Booth, L., Aivazian, V., Demirguc-Kunt, A., & Maksimovic, V. (2001). Capital structures in developing countries. Journal of Finance, LVI, 87–130.
- Crnigoj, M. and Mramor, D. (2009). Determinants of capital structure in emerging European economies: Evidence from Slovenian firms. Emerging markets finance & trade, 45(1), 72-89
- Eugene, F. Fama & Kenneth, R. French (2002) .Testing Trade-Off and Pecking Order Predictions about Dividends and Debt. The Review of Financial Studies, Vol.15, No.1, pp. 1-33.
- Hong, Z & Z. X, Jason (2006).The Financing Behavior of Listed Chinese Firms.The British Accounting Review, 38, pp: 239-258.
- Http: //en.wikipedia.org/wiki/high-tech (2010)
- Huang, G & F. M, Song (2006). The Determinants of Capital Structure: Evidence from China. China Economic Review, 17, pp: 14- 36.
- Karadeniz, E., Kandir, S., Balcilar, M., Onal, Y. (2009). Determinants of capital structure: evidence from Turkish lodging companies. International journal of Contemporary Hospitality Management, 21, 594-609.
- Kumar, U. A. (2005). Comparison of neural networks and regression analysis: a new insight. Expert Systems with Applications, 29(2), 424–430.
- Margaritis, D. & Psillaki, M. (2010). Capital Structure, Equity Ownership & firm performance. Journal of banking & finance. No. 34. 621-632
- Ovtchinnikov, A. V. (2010). Capital Structure Decisions: Evidence from Deregulated industries. Journal of Financial Economics. No. 95
- Pao, H. T. (2008). A comparison of neural network and multiple regression analysis in modeling capital structure. Expert systems with application,35, 720-727.
- Smith, C., & Watts, R. (1992). The investment opportunity set and corporate financing, dividend and compensation policies. Journal of Financial Economics, 32, 263–292.
- Tseng, F. M., Yu, H. C., & Tzenf, G. H. (2002). Combining neural network model with seasonal time series ARIMA model. Technological Forecasting and Social Change, 69, 71–87.
- Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160, 501–514.